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A solution of the problem of deformation of a sphere under normal loadings is obtained 
by quadratures. The Green’s function of the boundary value problem is written out in 

finite form. In contrast to an analogous series solution p], the solution found admits of 

nonsmooth loadings. As an example, the problem of compression of a sphere by concen- 

trated forces is solved in closed form; the solution is expressed in terms of a hypergeo- 

metric function. 
It is known from p] that the solution of the ~equilibrium equations of an elastic body 

in displacements 
“,“:2:, grad div u - rot rot u = 0 

with the boundary conditions 

7H = 0, or = o(H), 7,r = U for ,r= R 

in a spherical coordinate system r, 8, cp has the following form: 

x 

u, = & s a(a)sinada 
0 

‘f d$ {i W4[AI, (+jn+’ + 
0 n=a 

A = cos (9 + a) + 2 sin 0 sin a sin29 

Here P, (I) are Legendre polynomials. and the coefficients At, are rational fraction 
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functions of n 

&& z 
(2n + 1) (rP + 2n - I + 2v) A 

(n - 1) In2 + (I+ 29 n + 1 + VI 

A,=- 
(2nfi)(n+5-4~) (2~ + i) (~8% + 2n - 1+ 2v) 

R’ + (1-t 2v) R + i + Y ’ Aa, = 
(a- 1) Inn + (if w n + I+ VJ 

Let us prove that the solution of (1) can be represented by quadratures. To do this we 
expand the A in in elementary fractions 

-(2n+l)$-4(1 -v)+ &-+A 

Q 
(2n-b v+4p -+I- & +Q +n n - Pal 

-2+&y+& 

2+&+&+& 

Here n, and fir are complex conjugate roots of the equation 

n2 + (1 + 2v)n -f- 1 + v = 0 
The constants P, 0, 8, T depend onIy on the Poisson’s ratio v and are given by the 

formulas 
p = 43 _6v+2+i W-12va+v+3 

)/3 

(2) 

12v-9 s_ 2 f i 24va---? 
2 )/3-4v’ 

T= 3-4v I +7v-6v= 
-y--+i ~ 

2 Jf3-4v= 

It is now evident that the question of the possibility of representing the solution in 

quadratures reduces to the question of the possibility of a finite representation of the 
series 

The value of the first sum is known jJ2-J 

2 x”P,(h) = -+ ) s=-@ - 2zh+ 1 
-0 

The last two series can be summed. as is seen from the following chain of formulas 

Let us note that the last integral is expressed in terms of elementary functions for 
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U= 1 ,and for a= &and a = &.agrees to i / a accuracy with the hypergeometric 

function of two variables PI ( -a, r/a, l/s, 1 -_a; xei arc cos A, se’ arc ups h). This fol- 
lows from the integral representation [2] 

I 

1 = ~ 
B (IA a) s p-1 (1 - y)“-1 (1 - up)-fJ (1 - tip)+ ay 

0 

Moreover, the series we are interested in can be integrated with respect to 9. 

Utilizirq the expression for the sum of the series, it is easy to verify, say, that 
‘/.n 

U(x)GU((5;e,a)= 1 d*jj znP,(h)=~-~(l+zcosecOsa) 
0 n-2 

h’s (l- OS-a x)a+4jGsina--Z--_, 
k4 = 42sinOsina (3) 

h’ 

Here K(k) is the complete elliptic integral of the first kind. 
Finally, let us represent the solution (1) in the following finite form ; 

n 

w,e) -&S Q (a) H, (r / R, 8, a) sin da 
0 

(4) 

where 

H,(x,O,a) = Gq + y(2x ~+u)+2(i--v)+b+] 

+~Ref(P~l?$ + ~)U(ddy 
0 

’ HO (~~8, a) = z ae a [(I - 4 U + Re f ( s;;T; T + +) U (4 du] 

(5) 

Here U = U(x) is defined by (3). the constants P, Q, S, T are given, as before, 

by (2). and 2nl= -(1+2v)+ iv- 

Let us investigate the solution obtained. 
Proceedfng from the representation (5). and utilizing the properties of elliptic integrals, 

it can be shown that the functions~,.and~s are continuous everywhere for 0 < x < 1. 
They have singularities at the point a = 8 on the surface of the sphere x = i such 
that to the accuracy of continuous functions 

sin ~4 (1, 8, CZ) = - 2 (1 - V) h 1 e - a 1 + o(i) 

sin a& (1, 8, a) = - l/J1 - 2x99~ sign (e - a) + O(1) 
for a -+ e 

Let us write relations (5) explicitly for cc = 0 

H,(x,e,O)+ +$x-t +*- I-332c0.38 +++ 1 
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a= Jfx2-222cos8+ 1 

Let us also note some other properties of the functions H, and He 

H&z, 8, a) = Hr(z, a, O), H, (x,9, a) = H, (z, J-C - 8, n - a) 

He (ix, 0, a) = He (z, n, a) = 0, He (ix, ‘3, a) = - He (I, 3t - 0, JC - a) 

As examples, let us consider the problem of deformation of a weighted sphere equilib- 
rated by a concentrated force, and the problem of compression of a sphere by two con- 

centrated forces applied at its poles. These problems have recently been considered by 

several authors [I, 3, 41. The singular part of the solution was isolated by some method 
or other in these papers, and was represented analytically, and hence the smooth part of 

the solution remained written in series form. 
Let us give closed solutions of the formulated problems. 

Example 1. First we turn to the problem of deformation of a weighted sphere of 

density P. The sphere is equilibrated by a concentrated force F - 4/hRgpg applied at 

the pole 8’ - 0, r = R. In this case the boundary conditions can be written as follows: 

d (6) sin 6 = - 2rFR 7 6 (6)P z (0) = 0 

where 6 (0) is the Dirac delta function. 
The corresponding displacements are 

3P 1 c 2v 
u r y,e)=-[cosemT + -$,(r/R,e+& 

~,o(r, e)=- E 
39 i - 2v 

sine,,,,+. + 3t LHs(rlR, 6, 0)1& 

(7) 

As before, the functions a, and Hs are given by formulas (6). 
The solution (7) is continuous everywhere except at the point of application of the 

force 6 = 0, r = R. The nature of the discontinuity is determined by the reIationships 

H, (1, 0, 0) +=(I -v) 

- (1 - 2~)” 1150s 8 In sin -$ ( i+sin+ +2sin+ i--sin+ 
1 ( 

+ 

+ReP+Q1 yl-“l-1 

s 

1 
2 Ya -1 -ycos0 1 dy (8) 

0 ya-2yc0se + I 

6 4sine1/~8-4sinlf~8cos6--1 
He(l,O,o&=--~[c~gT 

8 
1 + sinr/2 8 f2sin6lnsin~x 
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1 

)/Y’-2ycose+l 
-1 -ycos0 dy 

it is easy to see that the integrands are bounded everywhere for 0 < 8 < n, 0 4 y < I. 

The first two members in the relationships (8) agree asymptotically, for 6 4 0. with the 

isolated singularity in the solutions in [1, 31. 
Example 2. Evidently the solution of the problem of compression of a sphere by 

concentrated forces applied to its poles r = I?, 6 = u and 8 = I[ is the superposition of 

two solutions of type (7), namely 

ur (r, 6):= Uro (r, 8) + ur* (r, 2s - 9) 

u, (r, e) = u8a (r, e) - ~~0 (r, x - 0) 

Thus the solution of the problem of deformation of a sphere by an axisymmetric nor- 

mal loading is represented by the quadratures of (4). (5). The advantage of this repre- 

sentation will be that it is valid even for loadings having a strong discontinuity of a 
concentrated force type. 
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A method of investigating the integral equation for the case when its kernel is a mero- 

morphic function with simple poles and double zeros, is presented. The integral equation 
is reduced to an infinite system of linear algebraic equations which normally has a solu- 

tion, and this solution is constructed together with that of a certain finite system. A gene- 
ral form of sufficient conditions which must be imposed on the right side of the equation 

to ensure that it has a unique solution, is derived. 
Mixed problems of the theory of elasticity on determination of stresses generated under 

a die impressed into an elastic layer lying without friction on a rigid founaation 111, and 
the problem concerning the stresses generated under a wheel with a tyre, fitted on an 
elastic shaft [2], both lead to an integral equation of the form 


